Evaluating AI Systems for Diabetic Retinopathy Screening

By Danélia Botes

August 15, 2024

Introduction

Diabetes mellitus is a global health crisis affecting 1 in 10 adults. With rates quadrupling over the past two decades, approximately 537 million people are currently affected. This figure is projected to rise to 784 million by 2045. The financial burden of diabetes is substantial, with most costs directed toward managing complications. Diabetic retinopathy (DR) remains a leading cause of blindness among working-age individuals. Early detection through annual screenings and subsequent treatments can prevent or delay sight loss.

The English National Health Service (NHS) Diabetic Eye Screening Programme (DESP) faces challenges due to rising diabetes prevalence. Manual grading of approximately 13 million images each year is required. Automated retinal image analysis systems (ARIAS), which often utilise artificial intelligence (AI), offer an alternative by detecting those at medium to high risk of developing sight-threatening DR. This technology significantly expands grading capacity. However, vendor-led studies often present overly optimistic estimates compared to independent evaluations. Therefore, comparisons between multiple ARIAS using consistent datasets and computational environments are essential. Algorithmic fairness across diverse population subgroups must also be assessed before deployment.

Challenges in ARIAS Evaluation

Evaluating ARIAS presents several challenges. Vendor-independent comparisons on large, real-life population data are necessary for impartial evaluations. The largest, most ethnically diverse dataset from the North East London NHS DESP serves as a sustainable platform for independent evaluation of state-of-the-art ARIAS. This includes AI systems licensed as medical devices, such as those with FDA or CE Class IIa certification.

The evaluation methodology involves sample size calculations for equitable precision across population subgroups. This includes ethnicity, age, and levels of deprivation, along with a spectrum of diabetic eye disease. The platform can provide updated information on ARIAS performance at scale, offering feedback to vendors for algorithm improvements. Building transparent relationships with vendors is crucial for open-label publishing of ARIAS performance metrics.

Methodology and Findings

This methodology involves a comprehensive statistical analysis plan that ensures robustness and transparency. The evaluation faced challenges, including unpredictable timelines for ARIAS software delivery and bug fixes. The absence of a standard API for ARIAS and the intricate setup of the local Trusted Research Environment (TRE) introduced substantial time overheads. Some ARIAS vendors struggled to adapt their cloud-based systems to run offline, a requirement of NHS data governance standards. Furthermore, some vendors indicated their systems could only process high-resolution images, although the evaluation dataset contained lower resolution images that did not affect processing.

Conducting evaluations in a cloud-hosted TRE could have avoided many functional issues, allowing vendors to develop and test on a readily accessible platform. This would provide the research team with fast and flexible remote access, facilitating nearly real-world testing before deployment.

Figure 1. Timelines for Vendor Enrollment, Software Preparation, and Verification

Evaluating AI Systems for Diabetic Retinopathy Screening

This methodological approach is suitable for evaluating AI in other healthcare imaging domains. Governmental, NHS, and healthcare provider stakeholders can employ this equitable methodology before implementation. The approach reflects findings from a recent governmental review on equity in medical devices, which highlighted the importance of testing AI medical devices in real-world contexts.

Key features of this study support the generalisability of findings, including multiple vendor participation and a large, diverse, clinically relevant dataset. A vendor-neutral research team executed the study using the same computational environment, independent of commercial interests. This encourages investment in health service provision, fostering trust in technological innovation.

Conclusion

Evaluating AI systems for diabetic retinopathy screening requires a comprehensive, transparent, and equitable approach. The methodology described here, using a large, diverse dataset and a vendor-neutral platform, ensures robust and impartial evaluations. Future evaluations should consider the comparative cost-effectiveness of ARIAS approaches and the benefits of cloud-hosted TREs. This approach not only enhances the accuracy of AI systems but also builds trust in their deployment across diverse healthcare settings.

Reference url

Recent Posts

AI Drug Safety Surveillance
           

Created and Validated by FDA: AI Drug Safety Surveillance Tool

🚀 Discover how the AI-driven LabelComp tool is transforming drug safety surveillance! By automating the identification of adverse events in drug labelling, LabelComp enhances accuracy and efficiency, supporting regulatory decision-making and public health. 🌐💊
#SyenzaNews #AIinHealthcare #DrugSafety #PharmaInnovation #RegulatoryScience

School-based health centres
                      

The Role of School-Based Health Centres in Advancing Health Equity

🌟 School-based health centres (SBHCs) are improving healthcare for underserved youth across the US! These centres provide vital services, from preventive care to chronic disease management, right where students need them most – in schools. 📚🏥

SBHCs improve academic performance, reduce absenteeism, and enhance overall student well-being. Let’s support these essential centres and ensure every child has access to quality healthcare. 🌟

#SyenzaNews #SBHC #ChronicDiseaseManagement #HealthEquity #PreventiveCare

ABA guidelines for Autism
                

Enhancing Care in Abu Dhabi: The New ABA Guidelines for Autism

🌟 Exciting developments in Abu Dhabi! The Department of Health has introduced new ABA guidelines for Autism Spectrum Disorder, aiming to improve care for People of Determination. This initiative focuses on standardising care, enhancing accessibility, and fostering collaboration between healthcare and education professionals.
Learn more about how these guidelines can make a difference in the lives of individuals with ASD.
#SyenzaNews #HealthcareInnovation #AutismCare #InclusiveHealth #ABAGuidelines #AbuDhabiHealth

When you collaborate with VSH Foundation, it's like unlocking a new dimension in healthcare innovation.

Our research synergizes with your vision, combining expertise in health economics, policy analysis, advanced analytics, and AI applications in healthcare. You’ll witness the fusion of cutting-edge methodologies and real- world impact, as we work together to transform healthcare systems and improve patient outcomes globally.

CORRESPONDENCE ADDRESS

PO Box 8547, #95478, Boston, MA 02114, USA

© 2024 Value Science Health Foundation. All rights reserved.
Made with by Frogiez