Machine Learning to Improve Diagnosis of Long QT Syndrome

By Danélia Botes

March 25, 2024

Introduction:

Long QT Syndrome (LQTS) is a cardiac disorder associated with sudden arrhythmic death. Traditional methods of detection, such as resting electrocardiography (ECG), are often inadequate as they fail to identify 30% to 50% of patients with concealed LQTS. However, recent developments in artificial intelligence (AI) and machine learning (ML) show promise in improving LQTS diagnosis accuracy.

Genetic Testing in LQTS Diagnosis:

Genetic testing plays a crucial role in diagnosing LQTS. A positive result is present in 80% of patients with a definite diagnosis of LQTS. Most cases that are genotype-positive (90%-95%) have culprit variants in the KCNQ1 or KCNH2 genes. The identification of a positive genotype in a patient has significant implications for their risk of arrhythmias, lifestyle recommendations, genetic counselling, and pharmacologic therapy. However, it’s important to note that genetic testing alone is not sufficient for diagnosing LQTS, especially in cases of concealed LQTS.

Machine Learning and LQTS Diagnosis:

ML, particularly convolutional neural networks (CNNs), is increasingly being applied to detect LQTS on ECGs. It can complement genetic testing, providing a more comprehensive and accurate diagnostic approach. These advanced AI methodologies offer a more accurate and efficient approach to identifying LQTS, even in patients with concealed or mild symptoms.

CNN Model Development and Testing:

A recent study tested a CNN model that identifies LQTS on baseline ECGs. The researchers developed this model for a diverse group of patients suspected of having LQTS. Furthermore, the model can differentiate between the most common LQTS genetic types. These types specifically involve variants in KCNQ1 or KCNH2.

Figure 1. Performance of a Deep Learning Model for LQTS
and Concealed LQTS Detection

Model Validation and Performance:

The CNN model demonstrated high accuracy and sensitivity in detecting LQTS and distinguishing between KCNQ1 and KCNH2 variants. The model’s performance was robust across different centres, ages, sexes, and ethnicities. It outperformed QTc intervals measured by arrhythmia experts, particularly in identifying LQTS in ECGs with normal or borderline QTc intervals.

Figure 2. Performance of a Deep Learning Model for LQTS and Concealed LQTS Detection by Validation Subgroup

Clinical Applications of CNNs in ECG Interpretation:

The use of CNNs in ECG interpretation could revolutionise LQTS diagnosis. ML can detect hidden features on ECGs, even in cases of concealed LQTS. This technology could be crucial for screening, helping to identify patients who may need further testing or are at risk of QT-mediated arrhythmias when exposed to QT-prolonging drugs. ML approaches are characterised by their lower requirement for knowledge, reduced time and labour intensity, and independence from other clinical information, unlike human readers. These methods can be used in small, underserved communities, where LQTS may be more common.

Conclusion:

CNNs are effective in detecting LQTS and differentiating between the two most common genotypes. Broader validation over an unselected general population may support the broad application of this model to stratify torsade de pointes risk in patients with suspected LQTS.

Reference url

Recent Posts

AI Drug Safety Surveillance
           

Created and Validated by FDA: AI Drug Safety Surveillance Tool

🚀 Discover how the AI-driven LabelComp tool is transforming drug safety surveillance! By automating the identification of adverse events in drug labelling, LabelComp enhances accuracy and efficiency, supporting regulatory decision-making and public health. 🌐💊
#SyenzaNews #AIinHealthcare #DrugSafety #PharmaInnovation #RegulatoryScience

School-based health centres
                      

The Role of School-Based Health Centres in Advancing Health Equity

🌟 School-based health centres (SBHCs) are improving healthcare for underserved youth across the US! These centres provide vital services, from preventive care to chronic disease management, right where students need them most – in schools. 📚🏥

SBHCs improve academic performance, reduce absenteeism, and enhance overall student well-being. Let’s support these essential centres and ensure every child has access to quality healthcare. 🌟

#SyenzaNews #SBHC #ChronicDiseaseManagement #HealthEquity #PreventiveCare

ABA guidelines for Autism
                

Enhancing Care in Abu Dhabi: The New ABA Guidelines for Autism

🌟 Exciting developments in Abu Dhabi! The Department of Health has introduced new ABA guidelines for Autism Spectrum Disorder, aiming to improve care for People of Determination. This initiative focuses on standardising care, enhancing accessibility, and fostering collaboration between healthcare and education professionals.
Learn more about how these guidelines can make a difference in the lives of individuals with ASD.
#SyenzaNews #HealthcareInnovation #AutismCare #InclusiveHealth #ABAGuidelines #AbuDhabiHealth

When you collaborate with VSH Foundation, it's like unlocking a new dimension in healthcare innovation.

Our research synergizes with your vision, combining expertise in health economics, policy analysis, advanced analytics, and AI applications in healthcare. You’ll witness the fusion of cutting-edge methodologies and real- world impact, as we work together to transform healthcare systems and improve patient outcomes globally.

CORRESPONDENCE ADDRESS

PO Box 8547, #95478, Boston, MA 02114, USA

© 2024 Value Science Health Foundation. All rights reserved.
Made with by Frogiez