The Evolution of AI in Clinical Settings: ChatGPT Training

By Sumona Bose

March 12, 2024

Introduction

ChatGPT (Generative Pre-trained Transformer) stands as a prominent Artificial Intelligence (AI) language model rooted in the transformer architecture. This neural network excels in processing sequential data, particularly text, through extensive exposure to vast text datasets. The training process involves pattern recognition and relationship establishment within the data, culminating in the generation of coherent language. Fine-tuning, complemented by human input and reinforcement learning from human feedback (RLHP), refines ChatGPT’s responses to various queries. ChatGPT’s most recent development is its GPT-4, the large language model (LLM) has been updated to understand, interpret and analyse images. These kind of developments indicate the evolution of AI in clinical settings.

The potential of GPT-4 in Medical Image Analysis

The potential impact on medical diagnostics remains significant. By leveraging image analysis, GPT-4 could enhance medical professionals’ diagnostic accuracy and speed, particularly in underserved regions. Evaluating GPT-4’s diagnostic prowess involved exposing it to diverse medical imaging modalities, from X-rays to Magnetic Resonance Imaging (MRI) and Optical coherence tomography (OCT) images. As demonstrated in Figure 1, GPT-4 can respond to prompts which specifically direct queries on interpreting medical images such as MRIs and OCTs.

Enhancing GPT-4’s image analysis proficiency necessitates further training on extensive medical image datasets to grasp nuanced patterns and correlations crucial for accurate diagnoses. While GPT-4 boasts a myriad of capabilities, it also harbours limitations, notably its reliance on training data patterns. This reliance implies potential performance disparities when faced with novel challenges or data misaligned with its training corpus. Addressing AI biases demands the incorporation of diverse datasets to fortify the model’s adaptability and mitigate predispositions in decision-making processes.

Figure 1: GPT-4 responses to two prompts with different links of the same image

Challenges and Considerations in GPT-4 Utilisation

GPT-4’s potential limitations include contextual understanding gaps, leading to potential misconceptions and inaccuracies, especially in technical domains. Users must verify information independently due to potential unreliability. The opaque nature of AI models demands cautious interpretation of outputs to avoid errors. In dynamic fields like healthcare, outdated or erroneous responses may occur. Furthermore, privacy concerns arise from potential data collection practices. Competing LLMs like Google’s Gemini (formerly Bard) and Meta’s LlaMa 2 with image analysis capabilities signal a growing landscape.Future efforts should focus on equitable and accountable LLM development through open-source codes and oversight mechanisms.

Conclusion

While GPT-4 showcases remarkable advancements in automated medical image analysis, challenges such as contextual understanding, reliability, and privacy concerns persist. As the field evolves with new models like Gemini and LlaMa 2, prioritising accountability and equity through open-source practices is crucial for the future of AI-driven healthcare innovations. Would you use GPT-4 to interpret your medical images?

Reference url

Recent Posts

AI Drug Safety Surveillance
           

Created and Validated by FDA: AI Drug Safety Surveillance Tool

🚀 Discover how the AI-driven LabelComp tool is transforming drug safety surveillance! By automating the identification of adverse events in drug labelling, LabelComp enhances accuracy and efficiency, supporting regulatory decision-making and public health. 🌐💊
#SyenzaNews #AIinHealthcare #DrugSafety #PharmaInnovation #RegulatoryScience

School-based health centres
                      

The Role of School-Based Health Centres in Advancing Health Equity

🌟 School-based health centres (SBHCs) are improving healthcare for underserved youth across the US! These centres provide vital services, from preventive care to chronic disease management, right where students need them most – in schools. 📚🏥

SBHCs improve academic performance, reduce absenteeism, and enhance overall student well-being. Let’s support these essential centres and ensure every child has access to quality healthcare. 🌟

#SyenzaNews #SBHC #ChronicDiseaseManagement #HealthEquity #PreventiveCare

ABA guidelines for Autism
                

Enhancing Care in Abu Dhabi: The New ABA Guidelines for Autism

🌟 Exciting developments in Abu Dhabi! The Department of Health has introduced new ABA guidelines for Autism Spectrum Disorder, aiming to improve care for People of Determination. This initiative focuses on standardising care, enhancing accessibility, and fostering collaboration between healthcare and education professionals.
Learn more about how these guidelines can make a difference in the lives of individuals with ASD.
#SyenzaNews #HealthcareInnovation #AutismCare #InclusiveHealth #ABAGuidelines #AbuDhabiHealth

When you collaborate with VSH Foundation, it's like unlocking a new dimension in healthcare innovation.

Our research synergizes with your vision, combining expertise in health economics, policy analysis, advanced analytics, and AI applications in healthcare. You’ll witness the fusion of cutting-edge methodologies and real- world impact, as we work together to transform healthcare systems and improve patient outcomes globally.

CORRESPONDENCE ADDRESS

PO Box 8547, #95478, Boston, MA 02114, USA

© 2024 Value Science Health Foundation. All rights reserved.
Made with by Frogiez